ГРУНТОВ - определение. Что такое ГРУНТОВ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ГРУНТОВ - определение

Найдено результатов: 64
ГРУНТОВ      
а, м., мор.
1. Парусиновая лента или трос, охватывающие подвешенную на шлюпбалках шлюпку и предо-храняющие ее от раскачивания.||Ср. БАКШТОВ, ЛЕЕР, МУСИНГ, НАЙТОВ, ОГОН, ФАЛРЕП.
2. Канат или стальная лента, подводимая под днище затонувшего судна при его подъеме.||Ср. БАКШТАГ, БУЙРЕП, КАБЕЛЬТОВ, ЛАГЛИНЬ, ЛИНЬ, ПЕРЛИНЬ, ФАЛ, ФАЛИНЬ, ШВАРТОВ, ШКЕНТЕЛЬ.
Механика грунтов         
Механика грунтов — раздел физики грунтов и прикладной механики, описывающий поведение грунтов. Он отличается от механики жидкости и механики твердого тела тем, что почвы состоят из гетерогенной смеси жидкостей (обычно воздуха и воды) и частиц (обычно глины, ила, песка и гравия), но почва может также содержать органические твердые вещества и другие вещества.Mitchell, J.K., and Soga, K. (2005) Fundamentals of soil behavior, Third edition, John Wiley and Sons, Inc., .Powrie, W., Spon Press, 2004, Soil Mechanics – 2nd ed A Guide to Soil Mechanics, Bolton, Malcolm, Macmillan Press, 1979.
Очистка грунтов         
Очистка грунтов от загрязнений — комплекс мероприятий, направленных на удаление, локализацию или разрушение загрязняющих компонентов грунтов с целью их экологической реабилитации (восстановления) Королёв В.А.
Разжижение грунтов         
  • землетрясения в Тюэцу в 2004 году]] разрушился асфальт и выпучилась канализационная шахта.
  • 4=1964 Niigata earthquake}} — из-за разжижения грунта упали и просели бетонные дома.
  • землетрясении в Крайстчерче (Кентербери, Н. Зеландия) в 2011 году]] грунтовые воды выступили на поверхность.
Разжижение грунтов — процесс, вследствие которого грунт ведёт себя не как твёрдое тело, а как плотная жидкость (флюид). РазжижениеJefferies, M. and Been, K. (Taylor & Francis, 2006) Soil Liquefaction более характерно для насыщенных влагой сыпучих] грунтов, таких как илистые пески или пески, содержащие прослойки непроницаемых для воды отложенийYoud, T.L., and Idriss, I.M. (2001). «Liquefaction Resistance of Soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils», Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 127(4), 297—313.
Загрязнение грунтов         
  • Пример химического загрязнения грунтов. Москва
Загрязнение грунтов — привнесение в грунты или возникновение в них новых, как правило, не характерных для них компонентов-загрязнителей (твердых, жидких, газообразных, биотических или комплексных), оказывающих вредное воздействие (прямое или косвенное) на экосистемы, включая и социальные (человека).
МЕХАНИКА ГРУНТОВ         
раздел механики сыпучих сред, охватывающий изучение напряженно-деформированного состояния, условий прочности и устойчивости, изменения свойств грунтов под влиянием внешних, главным образом механических, воздействий.
Механика грунтов         

научная дисциплина, изучающая напряженно-деформированное состояние Грунтов, условия их прочности, давление на ограждения, устойчивость грунтовых массивов и др. В М. г. рассматривается зависимость механических свойств грунтов от их строения и физического состояния, исследуются общая сжимаемость грунтов, их структурно-фазовая деформируемость, контактная сопротивляемость сдвигу. Результаты, полученные в М. г., используются при проектировании оснований и фундаментов зданий, промышленных и гидротехнических сооружений, в дорожном и аэродромном строительстве, устройстве подземных коммуникаций, прокладке трубопроводов, а также для прогнозирования деформаций и устойчивости откосов, подпорных стен и др. Методы М. г. применяются при рассмотрении задач об использовании взрывов и вибраций в производственных процессах, связанных с разработкой грунтов.

Основной вид деформации грунтов - уплотнение их при сжатии. Оно вызывается действием нормальных усилий, приложенных к элементу грунта, и происходит главным образом за счёт взаимного перемещения (сдвигов и поворотов) твёрдых минеральных частиц, вызывающего уменьшение пористости грунта. Характеристиками деформируемости грунтов служат коэффициент относительной сжимаемости или обратно пропорциональный ему модуль общей деформации и коэффициент относительной поперечной деформации, аналогичные модулю упругости и коэффициент Пуассона (см. Пуассона коэффициент) упругих тел, с той разницей, что нагружение грунта предполагается однократным (без последующей разгрузки) и грунт далёк от разрушения. Для грунтов характерна деформируемость их во времени как вследствие выжимания воды из пор грунта и вызываемого этим перераспределения давлений между поровой водой и грунтовым скелетом (процесс фильтрационной консолидации), так и в результате вязкого взаимного перемещения грунтовых частиц (процесс ползучести грунта).

Основной вид нарушения прочности грунта - смещение одной его части по отношению к другой вследствие незатухающего сдвига, переходящего в срез. Сопротивление срезу несвязных (сыпучих) грунтов обусловливается силами внутреннего трения, развивающегося в точках контакта частиц грунта при взаимном их смещении. В глинистых грунтах взаимному смещению препятствуют цементационные и водно-коллоидные связи, обусловливающие сопротивление срезу. Показатели прочности грунта - угол внутреннего трения и удельное сцепление (зависящие от физического состояния грунта) - являются лишь параметрами диаграммы среза, необходимыми в М. г. для расчёта прочности. Для глинистых грунтов величина сил внутреннего трения зависит от той доли внешней нагрузки, которая воспринимается их минеральным скелетом. Если часть нагрузки передаётся на поровую воду, то в грунте проявляется уменьшенное сопротивление срезу за счёт трения. В М. г. скорость движения воды в порах грунта описывается законом Дарси, скорость деформирования вязкопластичных межчастичных связей - интегральным уравнением теории наследственной ползучести Больцмана - Вольтерры, ядро которой устанавливается по результатам экспериментов. При вибрациях механические свойства грунтов (особенно несвязных) меняются в зависимости от интенсивности колебаний. Малосвязные грунты под действием вибраций в определённых условиях приобретают свойства вязких жидкостей.

В М. г. при построении прогнозов пользуются данными инженерной геологии (См. Инженерная геология), инженерной гидрогеологии (См. Инженерная гидрогеология), а также исходными зависимостями механики сплошной среды (См. Механика сплошной среды) и, в частности, - теорий упругости, пластичности, ползучести, статики сыпучей среды.

Задачи исследования напряжений и деформаций грунтовых массивов под действием внешних сил и собственного веса, разработка вопросов их прочности, устойчивости, давления грунтов на ограждения, а также на неглубоко расположенные подземные сооружения являются важнейшими в М. г.; решение их для различных случаев загружения имеет непосредственное приложение в практике строительства.

При рассмотрении поставленных проблем в М. г. в основном применяются 2 метода: расчётно-теоретический, основывающийся на математическом решении четко сформулированных задач М. г. с обязательным опытным (лабораторным или полевым) определением значений исходных параметров, и метод моделирования, используемый в тех случаях, когда сложность задачи не позволяет получить "замкнутого" решения или когда результат получается весьма громоздким. Первый метод интенсивно развивается благодаря применению ЭВМ. Второй метод (впервые предложенный в СССР Г. И. Покровским и Н. Н. Давиденковым) получает развитие в М. г. в двух направлениях: физического моделирования для задач, в которых не учитываются массовые силы, и центробежного моделирования, отвечающего требованиям теории подобия (см. Подобия теория) с учётом массовых сил.

Использование решений, основанных на уравнениях сплошной линейно-деформируемой среды и применяемых к грунтам лишь при определённых условиях, позволяет рассматривать многие задачи М. г., где напряжённое состояние не является предельным. В ряде случаев по теории линейно-деформируемой среды устанавливается лишь напряжённое состояние, а переход к деформациям осуществляется при помощи экспериментально определяемых зависимостей.

При рассмотрении задач о деформировании грунтов во времени (по теории фильтрационной консолидации или ползучести) применяется распределение напряжений, полученное на основе решения задачи для сплошной линейно-деформируемой среды.

Теория предельного равновесия сыпучих сред используется в М. г. для рассмотрения задач, связанных с определением критических нагрузок на основания, предельного равновесия грунтового откоса заданного профиля, очертания максимально устойчивых откосов без пригрузки или с заданной пригрузкой сверху, активного и пассивного давлений грунтов на наклонные подпорные стенки, устойчивости грунтовых сводов и др.

Некоторые виды грунтов, являясь структурно неустойчивыми (оттаивающие вечномёрзлые, лёссовые просадочные при замачивании, слабые структурные), обладают особенностями деформирования, связанными с резкими изменениями их физического состояния и структуры. В современных М. г. разработаны специальные методы расчёта осадок вечномёрзлых грунтов при их оттаивании, просадок лёссов при замачивании, устанавливаются предельные скорости загружения слабых глинистых и заторфованных грунтов из условия сохранения их структурной прочности и т. д. На основе научных достижений в области М. г. в СССР создан наиболее прогрессивный метод проектирования оснований и фундаментов по предельным деформациям. Важной задачей современной М. г. является дальнейшее совершенствование методов определения физико-механических свойств грунтов в лабораторных и полевых условиях, комплексного исследования совместной работы фундаментов сооружений и грунтов оснований, расчёта свайных фундаментов.

Первой фундаментальной работой по М. г. является исследование французского учёного Ш. Кулона (1773) по теории сыпучих тел, ряд результатов которого успешно применяется и в настоящее время при расчёте давления грунтов на подпорные стенки. Французским учёным Ж. Буссинеском было получено решение задачи (1885) о распределении напряжений в упругом полупространстве под сосредоточенной силой, послужившее основой для определения напряжений в линейно-деформируемых основаниях. Важным этапом в развитии М. г. явились исследования американского учёного К. Терцаги. Большой вклад в М. г. сделан русскими (В. И. Курдюмов, П. А. Миняев) и особенно советскими учёными. Последними разработана новейшая теория предельного равновесия грунтов (В. В. Соколовский, В. Г. Березанцев, С. С. Голушкевич, М. В. Малышев и др.), сформулированы и решены задачи теории консолидации двух- и трёхфазных грунтов (Н. М. Герсеванов и Д. Е. Польшин, В. А. Флорин, Н. А. Цытович, Н. Н. Маслов, Ю. К. Зарецкий и др.)., на базе теории балок на упругом основании исследованы вопросы совместной работы сооружений и их оснований (А. Н. Крылов, М. И. Горбунов-Посадов, В. А. Флорин, Б. Н. Жемочкин, А. П. Синицын, И. А. Симвулиди и др.). Важная роль принадлежит советским учёным в разработке ряда вопросов механики отдельных региональных видов грунтов - структурно-неустойчивых просадочных (Ю. М. Абелев, Н. Я. Денисов, Р. А. Токарь), многолетнемёрзлых (Н. А. Цытович, С. С. Вялов, М. Н. Гольдштейн и др.). Среди исследований по вопросам устойчивости откосов наиболее известны работы В. В. Соколовского, Н. Н. Маслова, М. Н. Гольдштейна, подпорных стенок - И. П. Прокофьева, Г. К. Клейна. Из зарубежных учёных в области М. г. наиболее известны своими работами: Ж. Керизель (Франция), И. Бринч-Хансен (Дания), Р. Гибсон, А. Бишоп (Великобритания), М. Био, У. Лэмб (США).

Научно-исследовательские работы по М. г. ведутся в ряде научных учреждений и вузов СССР, преимущественно в Научно-исследовательском институте оснований и подземных сооружений им. Н. М. Герсеванова, Московском инженерно-строительном институте им. В. В. Куйбышева и др. строительных вузах.

В 1936 по инициативе К. Терцаги было создано Международное общество по механике грунтов и фундаментостроению (ISSMFE), членом которого (с 1957) является СССР. 8-й конгресс этого общества состоялся в Москве в 1973. Орган общества - журнал "Géotechnique" (L., c 1948). В СССР с 1959 издаётся журнал "Основания, фундаменты и механика грунтов". Периодические издания выпускаются также в США, Франции, Италии и др. странах.

Лит.: Прокофьев И. П., Давление сыпучего тела и расчёт подпорных стенок, 5 изд., М., 1947; Герсеванов Н. М., Польшин Д. Е., Теоретические основы механики грунтов и их практические применения, М., 1948; Флорин В. А., Основы механики грунтов, т. 1-2, Л. - М., 1959-1961; Соколовский В. В., Статика сыпучей среды, 3 изд., М., 1960; Терцаги К., Теория механики грунтов, пер. с нем., М., 1961; Цытович Н. А., Механика грунтов, 4 изд., М., 1963; его же, Механика грунтов. Краткий курс, 2 изд., М., 1973; Клейн Г. К., Расчёт подпорных стен, М., 1964; Гольдштейн М. Н., Механические свойства грунтов, 2 изд., [т. 1-2], М., 1971-73.

Н. А. Цытович, М. В. Малышев.

Грунт         
  • Техногенные грунты
МНОГОКОМПОНЕНТНАЯ ДИНАМИЧНАЯ СИСТЕМА (ГОРНЫЕ ПОРОДЫ, ПОЧВЫ, ОСАДКИ И ТЕХНОГЕННЫЕ ОБРАЗОВАНИЯ)
Грунт (почва)
I

Ян Янович [16(28).4.1892, Валмиера, ныне Латвийская ССР, -8.12.1950, Ленинск, ныне Волгоградской обл.], активный участник борьбы за установление Сов. власти в Коломне; журналист. Член Коммунистической партии с 1907. Родился в семье торговца. Окончил гимназию. В 1912-13 агитатор и парт. организатор в Риге. В 1914-15 в Москве один из инициаторов создания латыш, социал-демократической организации т.н. "Тверской группы" РСДРП; держал подпольную типографию. Около 10 лет провёл на каторге и в ссылке. С апреля 1917 парторганизатор Московского окружного комитетата РСДРП(б) в Коломне, там же член ревкома, редактор журнала "Большевик" - органа районного комитета Коломны. После октября 1917 председатель уездного комитета РСДРП(б), комиссар Коломны и уезда. С сентября 1918 редактор газет политотдела 5-й армии. С тех пор на редакционно-издательской работе: в Уфе - редактор газеты "Известия" и журнала "Пахарь"; в Москве - заведующий отделом рабочей жизни "Правды"; в Хабаровске и Сталинграде - главный редактор местных газет. В 1931-39 работал в издательстве Моссовета. В 1939-41 редактор фабрики диапозитивных с.-х. фильмов. С 1941 персональный пенсионер.

Лит.: Ефремцев Г., Победа Советов в Коломне, М., 1957.

II (польск, grunt, от нем. Grund - основа, почва)

любые горные породы, залегающие преимущественно в пределах зоны выветривания (включая почвы) и являющиеся объектом инженерно-строительной деятельности человека. Г. могут быть использованы в качестве: оснований зданий и различных инженерных сооружений, материала для сооружений (дорог, насыпей, плотин), среды для размещения подземных сооружений (тоннелей, трубопроводов, хранилищ). Г. подразделяются на скальные и рыхлые [по классификации, принятой в строительных нормах и правилах (СНиП), - нескальные].

К скальным относятся изверженные, метаморфические и осадочные породы с жёсткой связью между зёрнами, залегающие в виде монолитного или трещиноватого массива.

Рыхлые (нескальные) Г.: крупнообломочные (несцементированные), содержащие более половины по массе обломков пород с размерами частиц более 2 мм, например щебенистые (при преобладании скатанных частиц - галечные), и более мелкие Г. - дресвяные (при преобладании скатанных частиц - гравийные); песчаные - сыпучие в сухом состоянии, не обладающие свойством пластичности и содержащие более 80\% по массе частиц размером 2-0,05 мм (по классификации, принятой в СНиП, - менее 50\% по массе частиц крупнее 2 мм). Различают: песчаные Г. - гравелистые, крупные, средние, мелкие, пылеватые; лёссовые Г. (преобладают пылеватые частицы размером 0,05- 0,001 мм), часто обладающие просадочностью, т. е. способностью дополнительно уплотняться при увлажнении без изменения передающихся на них усилий; глинистые Г., подразделяющиеся в зависимости от содержания глинистых частиц (размером менее 0,001 мм) на супеси, суглинки и глины (в СНиП деление глинистых Г. на супеси, суглинки и глины производится в зависимости от пластических свойств). При увлажнении глинистые Г. набухают и становятся пластичными. В начальной стадии формирования глинистые Г., образовавшиеся в виде структурного осадка в воде при наличии микробиологических процессов и обладающие большой влажностью и пористостью, называются илами.

Г. изучаются в грунтоведении (См. Грунтоведение), как определённые естественно-исторические образования, свойства которых зависят от их генезиса, последующих эпигенетических процессов и современных условий залегания, а также как многофазные системы, изменяющиеся с течением времени. При исследовании свойств Г. изучают также их состав, структуру, текстуру и физические условия среды (температуру, давление и т. д.). Состав, структура (обусловленное характером внутренних связей закономерное расположение различных по крупности и форме минеральных частиц и агрегатов, на которые Г. может распадаться) и текстура (совокупность признаков, характеризующих неоднородность сложения грунтовой толщи в пласте) определяют качество Г. Среди важнейших свойств грунтов можно выделить: физические (удельная и объёмная масса, пористость, пластичность, усадка, водопроницаемость, электропроводность и др.), физико-химические (адсорбционная способность, Тиксотропия и др.) и физико-механические (сопротивление сдвигу, деформируемость и д.р.). Практически наиболее важными свойствами Г. являются деформационные и прочностные, характеризующие поведение Г. под внешними нагрузками (см. Горные породы, Механика грунтов). Для мёрзлых, промерзающих и оттаивающих Г. важны их теплофизические свойства. Петрографические особенности Г. и их свойства изучаются в лабораторных и в полевых условиях, как на образцах, так и в массиве. Понятия "свойства грунтов" и "инженерно-геологические свойства горных пород" аналогичны.

Для выяснения характера расположения пластов, их мощности, положения уровня грунтовых вод, оказывающих большое влияние на состояние и свойства Г., на месте строительства производят исследование Г. путём бурения, шурфовапия, зондирования и геофизических методов. Улучшение свойств Г. достигается введением цементирующих и вяжущих веществ, механическим уплотнением, осушением, обжигом, замораживанием и др. См. Закрепление грунтов, Замораживание грунтов, Уплотнение грунтов.

Лит.:Грунтоведение, под ред. Е. М. Сергеева, 3 изд., М., 1971; Сергеев Е. М., Грунтоведение, 2 изд., М., 1959; Цытович Н. А., Механика грунтов, М., 1963; Ларионов А. К., Инженерно-геологическое изучение структуры рыхлых осадочных пород, М., 1966; Строительные нормы и правила, ч. 2, раздел Б, гл. 1. Основания зданий и сооружений, М., 1962; Методическое пособие по инженерно-геологическому изучению горных пород, т. 1-2, М., 1968.

Е. М. Сергеев, М. В. Малышев.

III

в живописи, промежуточный слой, наносимый на основу (поверхность стены, доски, холста, картона) с целью обеспечить её прочную связь с красочным слоем, а также создать для живописи желаемые цветовой фон (белый, коричневый, серый) и фактуру (гладкую, зернистую и др.). Главным компонентом Г. является порошкообразное вещество (мел, гипс, известь, свинцовые или цинковые белила), связанное клеем, растительными маслами или масляными эмульсиями.

Г. подразделяются: в зависимости от основного компонента - на меловые, гипсовые, известковые и т. п.; в зависимости от связующего - на клеевые, масляные и эмульсионные. В монументальной живописи с древности используются глиняные, гипсовые и известковые грунты (однослойные и многослойные), а с 19 в. - и цементные; в древней и средневековой станковой живописи и миниатюре - меловые и гипсовые грунты на животных клеях. С появлением масляной живописи (15 в.) наряду с клеевыми начинают применяться эмульсионные и масляные грунты (однослойные и многослойные). Г. в русской средневековой стенописи, в иконописи, а также в расписной или золочёной резьбе по дереву называется Левкасом.

Г. в графике - кислотоупорный слой, наносимый при выполнении некоторых видов гравюры (См. Гравюра) (например, офорта, акватинты) на металлическую гравировальную доску с целью предохранить при травлении отдельные её участки от воздействия кислоты.

Лит.: Тютюнник В. В., Грунтованный холст для масляной живописи, М., 1949; Киплик Д. И., Техника живописи, 6 изд., М. - Л., 1950; Сланский Б., Техника живописи. Живописные материалы, [пер. с чеш.], М., 1962.

В. В. Филатов, А. С. Зайцев.

грунт         
  • Техногенные грунты
МНОГОКОМПОНЕНТНАЯ ДИНАМИЧНАЯ СИСТЕМА (ГОРНЫЕ ПОРОДЫ, ПОЧВЫ, ОСАДКИ И ТЕХНОГЕННЫЕ ОБРАЗОВАНИЯ)
Грунт (почва)
ГРУНТ, грунта, ·муж. (·нем. Grund).
1. Почва, земля. Глинистый грунт.
| Твердая почва на некоторой глубине, твердое дно, материк. Сваи вбивают в грунт.
2. Первый слой краски, подмазка, загрунтовка, которой покрывают холст или дерево для того, чтобы писать красками (·маляр., живоп.).
3. Заштрихованное поле, фон, в гравюрах и рисунках (·тип. ).
Пересадить в грунт - пересадить (растение) из горшка в землю, на волю.
ГРУНТ         
  • Техногенные грунты
МНОГОКОМПОНЕНТНАЯ ДИНАМИЧНАЯ СИСТЕМА (ГОРНЫЕ ПОРОДЫ, ПОЧВЫ, ОСАДКИ И ТЕХНОГЕННЫЕ ОБРАЗОВАНИЯ)
Грунт (почва)
1. заштрихованное поле, фон в гравюрах и рисунках (спец.).
2. В живописи, малярных работах: промежуточный слой (краски, специального состава), которым покрывают поверхность перед нанесением краски.
3. почва, образующая дно водоема, водного потока;твердое дно.
Илистый г. пруда. Сваи вбиваются в г.
4. То же, что почва (в 1 знач.).
Песчаный г. Пересадить цветок из горшка в г.
Что такое ГРУНТОВ - определение